Search results
Results From The WOW.Com Content Network
In statistics, the t distribution was first derived as a posterior distribution in 1876 by Helmert [19] [20] [21] and Lüroth. [22] [23] [24] As such, Student's t-distribution is an example of Stigler's Law of Eponymy. The t distribution also appeared in a more general form as Pearson type IV distribution in Karl Pearson's 1895 paper. [25]
Download as PDF; Printable version ... The phrase "T distribution" may refer to ... distribution in multivariate statistics. Multivariate Student distribution
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
Templates used in the creation and formatting of tables and columns. See also {{ List to table }} and its related Category:Articles requiring tables ; and Category:Multi-column templates for simple columns without tables.
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
Download as PDF; Printable version; In other projects ... WikiProject Statistics Template: ... (α/2))th percentile depends on how your t-distribution tables are ...
In statistics, the folded-t and half-t distributions are derived from Student's t-distribution by taking the absolute values of variates. This is analogous to the folded-normal and the half-normal statistical distributions being derived from the normal distribution .
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]