When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of Solar System objects most distant from the Sun

    en.wikipedia.org/wiki/List_of_Solar_System...

    One particularly distant body is 90377 Sedna, which was discovered in November 2003.It has an extremely eccentric orbit that takes it to an aphelion of 937 AU. [2] It takes over 10,000 years to orbit, and during the next 50 years it will slowly move closer to the Sun as it comes to perihelion at a distance of 76 AU from the Sun. [3] Sedna is the largest known sednoid, a class of objects that ...

  3. Solar System - Wikipedia

    en.wikipedia.org/wiki/Solar_System

    Like Pluto, its orbit is highly eccentric, with a perihelion of 38.2 AU (roughly Pluto's distance from the Sun) and an aphelion of 97.6 AU, and steeply inclined to the ecliptic plane at an angle of 44°. [222] Gonggong (33.8–101.2 AU) is a dwarf planet in a comparable orbit to Eris, except that it is in a 3:10 resonance with Neptune.

  4. Astronomical unit - Wikipedia

    en.wikipedia.org/wiki/Astronomical_unit

    This is because the distance between Earth and the Sun is not fixed (it varies between 0.983 289 8912 and 1.016 710 3335 au) and, when Earth is closer to the Sun , the Sun's gravitational field is stronger and Earth is moving faster along its orbital path. As the metre is defined in terms of the second and the speed of light is constant for all ...

  5. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    The average distance between Neptune and the Sun is 4.5 billion km (about 30.1 astronomical units (AU), the mean distance from the Earth to the Sun), and it completes an orbit on average every 164.79 years, subject to a variability of around ±0.1 years. The perihelion distance is 29.81 AU, and the aphelion distance is 30.33 AU.

  6. Titius–Bode law - Wikipedia

    en.wikipedia.org/wiki/Titius–Bode_law

    Titius–Bode law. The Titius–Bode law (sometimes termed simply Bode's law) is a formulaic prediction of spacing between planets in any given planetary system. The formula suggests that, extending outward, each planet should be approximately twice as far from the Sun as the one before.

  7. Venus - Wikipedia

    en.wikipedia.org/wiki/Venus

    Venus is the second planet from the Sun, making a full orbit in about 224 days. Venus orbits the Sun at an average distance of about 0.72 AU (108 million km; 67 million mi), and completes an orbit every 224.7 days.

  8. Ceres (dwarf planet) - Wikipedia

    en.wikipedia.org/wiki/Ceres_(dwarf_planet)

    At 2.8 AU from the Sun, Ceres appeared to fit the Titius–Bode law almost perfectly; when Neptune was discovered in 1846, eight AU closer than predicted, most astronomers concluded that the law was a coincidence. [24] The early observers were able to calculate the size of Ceres only to within an order of magnitude.

  9. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    The Hill sphere (gravitational sphere of influence) of the Earth is about 1,500,000 kilometers (0.01 AU) in radius, or approximately four times the average distance to the Moon. [10] [nb 2] This is the maximal distance at which the Earth's gravitational influence is stronger than the more distant Sun and planets. Objects orbiting the Earth must ...