When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  3. Category:Conic sections - Wikipedia

    en.wikipedia.org/wiki/Category:Conic_sections

    Media in category "Conic sections" This category contains only the following file. Drawing an ellipse via two tacks a loop and a pen 2.jpg 480 × 640; 24 KB

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a ...

  5. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.

  6. Concentric objects - Wikipedia

    en.wikipedia.org/wiki/Concentric_objects

    Geometric objects with a well-defined axis include circles (any line through the center), spheres, cylinders, [2] conic sections, and surfaces of revolution. Concentric objects are often part of the broad category of whorled patterns, which also includes spirals (a curve which emanates from a point, moving farther away as it revolves around the ...

  7. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4.

  8. Circumconic and inconic - Wikipedia

    en.wikipedia.org/wiki/Circumconic_and_inconic

    In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.

  9. Steiner conic - Wikipedia

    en.wikipedia.org/wiki/Steiner_conic

    It is usual, when dealing with dual and common conic sections, to call the common conic section a point conic and the dual conic a line conic. In the case that the underlying field has = all the tangents of a point conic intersect in a point, called the knot (or nucleus) of the conic. Thus, the dual of a non-degenerate point conic is a subset ...