When.com Web Search

  1. Ad

    related to: homogeneous function examples in math

Search results

  1. Results From The WOW.Com Content Network
  2. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    A norm over a real vector space is an example of a positively homogeneous function that is not homogeneous. A special case is the absolute value of real numbers. The quotient of two homogeneous polynomials of the same degree gives an example of a homogeneous function of degree zero. This example is fundamental in the definition of projective ...

  3. Homogeneous polynomial - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_polynomial

    In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.

  4. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...

  5. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.

  6. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    In mathematics, a quadratic form is a ... ("form" is another name for a homogeneous polynomial). For example, ... The map Q is a homogeneous function of degree 2, ...

  7. Polarization of an algebraic form - Wikipedia

    en.wikipedia.org/wiki/Polarization_of_an...

    In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.

  8. Asymptotic homogenization - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_homogenization

    Of course, all matter is inhomogeneous at some scale, but frequently it is convenient to treat it as homogeneous. A good example is the continuum concept which is used in continuum mechanics . Under this assumption, materials such as fluids , solids , etc. can be treated as homogeneous materials and associated with these materials are material ...

  9. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.