Search results
Results From The WOW.Com Content Network
The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
Kaplan–Meier graph by treatment group in aml. The null hypothesis for a log-rank test is that the groups have the same survival. The expected number of subjects surviving at each time point in each is adjusted for the number of subjects at risk in the groups at each event time.
That is, 97% of subjects survive more than 2 months. Survival function 2. Median survival may be determined from the survival function: The median survival is the point where the survival function intersects the value 0.5. [4] For example, for survival function 2, 50% of the subjects survive 3.72 months. Median survival is thus 3.72 months.
The problem with measuring overall survival by using the Kaplan-Meier or actuarial survival methods is that the estimates include two causes of death: deaths from the disease of interest and deaths from all other causes, which includes old age, other cancers, trauma and any other possible cause of death. In general, survival analysis is ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
Kaplan-Meier curve illustrating overall survival based on volume of brain metastases.Elaimy et al. (2011) [6] In its simplest form, the hazard ratio can be interpreted as the chance of an event occurring in the treatment arm divided by the chance of the event occurring in the control arm, or vice versa, of a study.
Accelerated life testing is the process of testing a product by subjecting it to conditions (stress, strain, temperatures, voltage, vibration rate, pressure etc.) in excess of its normal service parameters in an effort to uncover faults and potential modes of failure in a short amount of time.
It is used in survival theory, reliability engineering and life insurance to estimate the cumulative number of expected events. An "event" can be the failure of a non-repairable component, the death of a human being, or any occurrence for which the experimental unit remains in the "failed" state (e.g., death) from the point at which it changed on.