When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...

  3. Zisman Plot - Wikipedia

    en.wikipedia.org/wiki/Zisman_Plot

    Liquids 1 and 2 fully wet the surface as shown by their low contact angles, so they should be neglected when first drawing the line of best fit to find the critical liquid surface tension needed to effectively wet the PC surface, γ C, which is simply the x-intercept of the best fit line for the Zisman Plot.

  4. File:Surface Tension Diagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Surface_Tension...

    This image is a derivative work of the following images: File:SurftensionDiagram.png licensed with PD-user-w . 2007-09-01T14:57:35Z Karlhahn 350x192 (2130 Bytes) {{Information |Description=Author: Karl Hahn Subject: Illustrative diagram of surface tension forces on a needle floating on the surface of water (shown in crossection).

  5. Meniscus (liquid) - Wikipedia

    en.wikipedia.org/wiki/Meniscus_(liquid)

    A: The bottom of a concave meniscus. B: The top of a convex meniscus. In physics (particularly fluid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.

  6. Laplace pressure - Wikipedia

    en.wikipedia.org/wiki/Laplace_pressure

    The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids.

  7. Cheerios effect - Wikipedia

    en.wikipedia.org/wiki/Cheerios_effect

    The effect is observed in small objects which are supported by the surface of a liquid. There are two types of such objects: objects which are sufficiently buoyant that they will always float on the surface (for example, Cheerios in milk), and objects which are heavy enough to sink when immersed, but not so heavy as to overcome the surface tension of the liquid (for example, steel pins on water).

  8. 50 common hyperbole examples to use in your everyday life

    www.aol.com/news/50-common-hyperbole-examples...

    Ahead, we’ve rounded up 50 holy grail hyperbole examples — some are as sweet as sugar, and some will make you laugh out loud. 50 common hyperbole examples I’m so hungry, I could eat a horse.

  9. Water potential - Wikipedia

    en.wikipedia.org/wiki/Water_potential

    Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension). The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil.