Search results
Results From The WOW.Com Content Network
giving the basic form of Brahmagupta's formula. It follows from the latter equation that the area of a cyclic quadrilateral is the maximum possible area for any quadrilateral with the given side lengths. A related formula, which was proved by Coolidge, also gives the area of a general convex quadrilateral. It is [2]
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
Download as PDF; Printable version; In other projects ... A Brahmagupta quadrilateral [27] is a cyclic quadrilateral with integer sides, ... Derivation of Formula for ...
Download as PDF; Printable version; In other projects ... Brahmagupta theorem; Brahmagupta's formula; J. Japanese theorem for cyclic quadrilaterals; N. Newton's ...
Brahmagupta (c. 598 – c. 668 CE) was an Indian mathematician and astronomer.He is the author of two early works on mathematics and astronomy: the Brāhmasphuṭasiddhānta (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical treatise, and the Khandakhadyaka ("edible bite", dated 665), a more practical text.
The Brāhma-sphuṭa-siddhānta ("Correctly Established Doctrine of Brahma", abbreviated BSS) is a main work of Brahmagupta, written c. 628. [1] This text of mathematical astronomy contains significant mathematical content, including the first good understanding of the role of zero, rules for manipulating both negative and positive numbers, a method for computing square roots, methods of ...
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area of a cyclic quadrilateral whose ...