Search results
Results From The WOW.Com Content Network
Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.
Homogeneous Diophantine equations of degree two are easier to solve. The standard solving method proceeds in two steps. One has first to find one solution, or to prove that there is no solution. When a solution has been found, all solutions are then deduced. For proving that there is no solution, one may reduce the equation modulo p. For ...
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
Let the system of equations be written in matrix form as = where is the coefficient matrix, is the vector of unknowns, and is an vector of constants. In which case, if the system is indeterminate, then the infinite solution set is the set of all vectors generated by [4]
By the Rouché–Capelli theorem, the system of equations is inconsistent, meaning it has no solutions, if the rank of the augmented matrix (the coefficient matrix augmented with an additional column consisting of the vector b) is greater than the rank of the coefficient matrix. If, on the other hand, the ranks of these two matrices are equal ...
A singular solution y s (x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the ...
Frobenius coin problem with 2-pence and 5-pence coins visualised as graphs: Sloping lines denote graphs of 2x+5y=n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively. A point on a line gives a combination of 2p and 5p for its given total (green).