Search results
Results From The WOW.Com Content Network
Weisstein, Eric W. "Fermat's Last Theorem". MathWorld. O'Connor, John J.; Robertson, Edmund F. (1996), Fermat's last theorem, MacTutor History of Mathematical Topics, archived from the original on 2013-01-16 University of St Andrews. "The Proof". PBS. The title of one edition of the PBS television series NOVA, discusses Andrew Wiles's effort to ...
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
Fermat's little theorem. Proofs of Fermat's little theorem; Fermat quotient; Euler's totient function. ... This page was last edited on 21 December 2024, at 19:59 (UTC).
Fenchel–Moreau theorem (mathematical analysis) Fermat's Last Theorem (number theory) Fermat's little theorem (number theory) Fermat's theorem on sums of two squares (number theory) Fermat's theorem (stationary points) (real analysis) Fermat polygonal number theorem (number theory) Fernique's theorem (measure theory)
Joseph-Louis Lagrange (1736–1813) was the first to give full proofs of some of Fermat's and Euler's work and observations—for instance, the four-square theorem and the basic theory of the misnamed "Pell's equation" (for which an algorithmic solution was found by Fermat and his contemporaries, and also by Jayadeva and Bhaskara II before them.)
To prove the Fermat's Last Theorem for a strong irregular prime p is more difficult (since Kummer proved the first case of Fermat's Last Theorem for B-regular primes, Vandiver proved the first case of Fermat's Last Theorem for E-regular primes), the most difficult is that p is not only a strong irregular prime, but 2p + 1, 4p + 1, 8p + 1, 10p ...
The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...
Math Girls (数学ガール, Sūgaku gāru) is the first in a series of math-themed young adult novels of the same name by Japanese author Hiroshi Yuki. It was published by SoftBank Creative in 2007, followed by Math Girls: Fermat's Last Theorem in 2008, Math Girls: Gödel's Incompleteness Theorems in 2009, and Math Girls: Randomized Algorithms in 2011.