When.com Web Search

  1. Ads

    related to: how to solve logarithms easily step by step pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Pollard's rho algorithm for logarithms - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm_for...

    Let be a cyclic group of order , and given ,, and a partition =, let : be the map = {and define maps : and : by (,) = {() + (,) = {+ ()input: a: a generator of G b: an element of G output: An integer x such that a x = b, or failure Initialise i ← 0, a 0 ← 0, b 0 ← 0, x 0 ← 1 ∈ G loop i ← i + 1 x i ← f(x i−1), a i ← g(x i−1, a i−1), b i ← h(x i−1, b i−1) x 2i−1 ← ...

  3. Function field sieve - Wikipedia

    en.wikipedia.org/wiki/Function_field_sieve

    In the subsequent step we use them to find linear relations including the logarithms of the functions in the decompositions. By solving a linear system we then calculate the logarithms. In the reduction step we express log a ⁡ ( b ) {\displaystyle \log _{a}(b)} as a combination of the logarithm we found before and thus solve the DLP.

  4. Pohlig–Hellman algorithm - Wikipedia

    en.wikipedia.org/wiki/Pohlig–Hellman_algorithm

    In this section, we present the general case of the Pohlig–Hellman algorithm. The core ingredients are the algorithm from the previous section (to compute a logarithm modulo each prime power in the group order) and the Chinese remainder theorem (to combine these to a logarithm in the full group).

  5. Index calculus algorithm - Wikipedia

    en.wikipedia.org/wiki/Index_calculus_algorithm

    This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).

  6. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that b x = a.Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a.

  7. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.