Search results
Results From The WOW.Com Content Network
The reaction is a two-stage process, in which first the alkene is reacted with dichlorocarbene or dibromocarbene to form a dihalocyclopropane. This intermediate is then reacted with a reducing metal, such as sodium or magnesium, or with an organolithium reagent .
Shi epoxidation with modern reaction conditions. The Shi epoxidation is a chemical reaction described as the asymmetric epoxidation of alkenes with oxone (potassium peroxymonosulfate) and a fructose-derived catalyst (1). This reaction is thought to proceed via a dioxirane intermediate, generated from the catalyst ketone by oxone (potassium ...
Reactions of the excited sensitizer can involve electron or hydrogen transfer, usually with a reducing substrate (Type I reaction) or interaction with oxygen (Type II reaction). [21] These various alternative processes and reactions can be controlled by choice of specific reaction conditions, leading to a wide range of products.
Alkenes bound to both electron-withdrawing and -donating groups tend to behave like the former, requiring long oxidation times and occasionally some heating. Like electron-poor epoxides, epoxide products from this class of substrates are often stable with respect to hydrolysis.
(Rings with 5 or 7 or more members undergo the reaction just fine.) [6] [7] [8] This organic reaction is closely related to the Hofmann elimination, but the base is a part of the leaving group. Sulfoxides can undergo an essentially identical reaction to produce sulfenic acids, which is important in the antioxidant chemistry of garlic and other ...
The metal-mediated processes include a carbonyl-olefination and an olefin–olefin metathesis event. There are two general mechanistic schemes to perform this overall transformation: one, reaction of a [M=CHR 1] reagent with an alkene to generate a new metal alkylidene, which then couples with a carbonyl group to form the desired substituted alkene and an inactive [M=O] species (type A); two ...
In organic chemistry, the E i mechanism (Elimination Internal/Intramolecular), also known as a thermal syn elimination or a pericyclic syn elimination, is a special type of elimination reaction in which two vicinal (adjacent) substituents on an alkane framework leave simultaneously via a cyclic transition state to form an alkene in a syn elimination. [1]
A second significant side reaction in reactions of ketones and aldehydes is selanylation of the intermediate selenoxide. This process leads to elimination products retaining a carbon-selenium bond, [16] and is more difficult to prevent than the seleno-Pummerer reaction. Tertiary selenoxides, which are unable to undergo enolization, do not react ...