Ad
related to: anion gap with normal bicarb levels
Search results
Results From The WOW.Com Content Network
Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap. [3]
The anion gap is the quantity difference between cations (positively charged ions) and anions (negatively charged ions) in serum, plasma, or urine. The magnitude of this difference (i.e., "gap") in the serum is calculated to identify metabolic acidosis. If the gap is greater than normal, then high anion gap metabolic acidosis is diagnosed.
Hyperchloremic acidosis is a form of metabolic acidosis associated with a normal anion gap, a decrease in plasma bicarbonate concentration, and an increase in plasma chloride concentration [1] (see anion gap for a fuller explanation).
(The serum potassium concentration may be added to the calculation, but this merely changes the normal reference range for what is considered a normal anion gap) Because the concentration of serum sodium is greater than the combined concentrations of chloride and bicarbonate an 'anion gap' is noted.
Urine NH 4 + is difficult to measure directly, but its excretion is usually accompanied by the anion chloride. A negative urine anion gap can be used as evidence of increased NH 4 + excretion. In a metabolic acidosis without a serum anion gap: A positive urine anion gap suggests a low urinary NH 4 + (e.g. renal tubular acidosis).
The serum anion gap is useful for determining whether a base deficit is caused by addition of acid or loss of bicarbonate. Base deficit with elevated anion gap indicates addition of acid (e.g., ketoacidosis). Base deficit with normal anion gap indicates loss of bicarbonate (e.g., diarrhea).
Result 3: if there is a pure HAGMA, the bicarb would be expected to fall at a similar rate as the anion gap rises, since one molecule of acid combines with one molecule of bicarb buffer. So the equation above should be balanced as the change in the AG away from normal (12) is similar to the change in bicarb away from normal (24).
In respiratory acidosis, the kidney produces and excretes ammonium (NH 4 +) and monophosphate, generating bicarbonate in the process while clearing acid. There is also an excretion of Cl- and a reabsorption of sodium, resulting in a negative urinary anion gap. [5] In respiratory alkalosis, less bicarbonate (HCO 3 −) is reabsorbed, thus ...