Search results
Results From The WOW.Com Content Network
The most common causes of high anion gap metabolic acidosis are: ketoacidosis, lactic acidosis, kidney failure, and toxic ingestions. [3]Ketoacidosis can occur as a complication of diabetes mellitus (diabetic ketoacidosis), but can occur due to other disorders, such as chronic alcoholism and malnutrition.
A high anion gap indicates increased concentrations of unmeasured anions by proxy. Elevated concentrations of unmeasured anions like lactate, beta-hydroxybutyrate, acetoacetate, PO 3− 4, and SO 2− 4, which rise with disease or intoxication, cause loss of HCO − 3 due to bicarbonate's activity as a buffer (without a concurrent increase in ...
Causes of increased anion gap include: Lactic acidosis [14] Ketoacidosis (e.g., Diabetic, alcoholic, or starvation) [15] Chronic kidney failure [16] 5-oxoprolinemia due to long-term ingestion of high-doses of acetaminophen with glutathione depletion [17] (often seen with sepsis, liver failure, kidney failure, or malnutrition [citation needed ...
Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap.
Urine NH 4 + is difficult to measure directly, but its excretion is usually accompanied by the anion chloride. A negative urine anion gap can be used as evidence of increased NH 4 + excretion. In a metabolic acidosis without a serum anion gap: A positive urine anion gap suggests a low urinary NH 4 + (e.g. renal tubular acidosis).
The serum anion gap is useful for determining whether a base deficit is caused by addition of acid or loss of bicarbonate. Base deficit with elevated anion gap indicates addition of acid (e.g., ketoacidosis). Base deficit with normal anion gap indicates loss of bicarbonate (e.g., diarrhea).
Other causes [citation needed] Ingestion of ammonium chloride, hydrochloric acid, or other acidifying salts; The treatment and recovery phases of diabetic ketoacidosis; Volume resuscitation with 0.9% normal saline provides a chloride load, so that infusing more than 3–4L can cause acidosis; Hyperalimentation (i.e., total parenteral nutrition)
Distal renal tubular acidosis (dRTA) is the classical form of RTA, being the first described. Distal RTA is characterized by a failure of acid secretion by the alpha intercalated cells of the distal tubule and cortical collecting duct of the distal nephron. [1] This failure of acid secretion may be due to a number of causes.