Search results
Results From The WOW.Com Content Network
Steam's starting pressure and temperature is the same for both the actual and the ideal turbines, but at turbine exit, steam's energy content ('specific enthalpy') for the actual turbine is greater than that for the ideal turbine because of irreversibility in the actual turbine.
The exit steam from one turbine is made to enter the nozzle of the succeeding turbine. Each of the simple impulse turbines would then be termed a "stage" of the turbine. Each stage comprises its ring of nozzle and blades. The steam from the boiler passes through the first nozzle ring, where its pressure drops and velocity increases. [2]
An important point to note here is that the inlet steam velocities to each stage of moving blades are essentially equal. It is because the velocity corresponds to the lowering of the pressure. Since, in a pressure compounded steam turbine, only a part of the steam is expanded in each nozzle. The steam velocity is lower than in the previous case.
A steam turbine often exhausts into a surface condenser that provides a vacuum. The stages of a steam turbine are typically arranged to extract the maximum potential work from a specific velocity and pressure of steam, giving rise to a series of variably sized high- and low-pressure stages.
There is no generation of steam bubbles within the water, because the pressure is above the critical pressure at which steam bubbles can form. It passes below the critical point as it does work in a high-pressure turbine and enters the generator's condenser. This results in slightly less fuel use and therefore less greenhouse gas production ...
A steam–electric power station is a power station in which the electric generator is steam-driven: water is heated, evaporates, and spins a steam turbine which drives an electric generator. After it passes through the turbine, the steam is condensed in a condenser. The greatest variation in the design of steam–electric power plants is due ...
The company introduced high-pressure steam engines to the riverboat trade in the Mississippi watershed. The first high-pressure steam engine was invented in 1800 by Richard Trevithick. [44] The importance of raising steam under pressure (from a thermodynamic standpoint) is that it attains a higher temperature. Thus, any engine using high ...
In a single-expansion (or 'simple') steam engine, the high-pressure steam enters the cylinder at boiler pressure through an inlet valve. The steam pressure forces the piston down the cylinder, until the valve shuts (e.g. after 25% of the piston's stroke). After the steam supply is cut off the trapped steam continues to expand, pushing the ...