Search results
Results From The WOW.Com Content Network
A (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the apex or vertex — and any point of some fixed space curve — the directrix — that does not contain the apex. Each of those lines is called a generatrix of the surface.
Typical examples include graphene, topological insulators, bismuth antimony thin films and some other novel nanomaterials, [1] [4] [5] in which the electronic energy and momentum have a linear dispersion relation such that the electronic band structure near the Fermi level takes the shape of an upper conical surface for the electrons and a ...
Ruled surface generated by two Bézier curves as directrices (red, green) A surface in 3-dimensional Euclidean space is called a ruled surface if it is the union of a differentiable one-parameter family of lines. Formally, a ruled surface is a surface in is described by a parametric representation of the form
For example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center; a conical surface is the locus of a line passing through a fixed point and crossing a curve; a surface of revolution is the locus of a curve rotating around a line.
An example In mathematics , a conchospiral a specific type of space spiral on the surface of a cone (a conical spiral ), whose floor projection is a logarithmic spiral . Conchospirals are used in biology for modelling snail shells , and flight paths of insects [ 1 ] [ 2 ] and in electrical engineering for the construction of antennas .
Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν 2 = 2/3.
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.