Search results
Results From The WOW.Com Content Network
Densely packed decimal (DPD) is an efficient method for binary encoding decimal digits. The traditional system of binary encoding for decimal digits, known as binary-coded decimal (BCD), uses four bits to encode each digit, resulting in significant wastage of binary data bandwidth (since four bits can store 16 states and are being used to store ...
10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles:
Chen–Ho encoding is a memory-efficient alternate system of binary encoding for decimal digits.. The traditional system of binary encoding for decimal digits, known as binary-coded decimal (BCD), uses four bits to encode each digit, resulting in significant wastage of binary data bandwidth (since four bits can store 16 states and are being used to store only 10), [1] even when using packed BCD.
The Intel BCD opcodes are a set of six x86 instructions that operate with binary-coded decimal numbers. The radix used for the representation of numbers in the x86 processors is 2. This is called a binary numeral system. However, the x86 processors do have limited support for the decimal numeral system.
In the decimal encoding, it is encoded as a series of p decimal digits (using the densely packed decimal (DPD) encoding). This makes conversion to decimal form efficient, but requires a specialized decimal ALU to process. In the binary integer decimal (BID) encoding, it is encoded as a binary number.
The significand's leading decimal digit forms from the (0)cde or 100e bits as binary integer. The subsequent digits are encoded in the 10 bit 'declet' fields 'tttttttttt' according the DPD rules (see below). The full decimal significand is then obtained by concatenating the leading and trailing decimal digits.
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
One with a binary integer significand field encodes the significand as a large binary integer between 0 and 10 p −1. This is expected to be more convenient for software implementations using a binary ALU. Another with a densely packed decimal significand field encodes decimal digits more directly. This makes conversion to and from binary ...