Search results
Results From The WOW.Com Content Network
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." [3]
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables.
Data and information visualization; Data point; Datasaurus dozen; Defect concentration diagram; Dendrogram; Distribution-free control chart; DOE mean plot; Dot plot (bioinformatics) Dot plot (statistics) Double mass analysis; Dual-flashlight plot
The exploration of the content of a data set; The use to find structure in data; Checking assumptions in statistical models; Communicate the results of an analysis. If one is not using statistical graphics, then one is forfeiting insight into one or more aspects of the underlying structure of the data.
PR has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning , due to the ...
The history of computational thinking as a concept dates back at least to the 1950s but most ideas are much older. [6] [3] Computational thinking involves ideas like abstraction, data representation, and logically organizing data, which are also prevalent in other kinds of thinking, such as scientific thinking, engineering thinking, systems thinking, design thinking, model-based thinking, and ...
There are many ways to analyse such data set. One way suggested by MFA is to consider each day as a group of variables in the analysis of the tables (each table corresponds to one date) juxtaposed row-wise (the table analysed thus has I {\displaystyle I} rows and J {\displaystyle J} x K {\displaystyle K} columns).