When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Earth-centered, Earth-fixed coordinate system - Wikipedia

    en.wikipedia.org/wiki/Earth-centered,_Earth...

    The reverse conversion is harder: given X-Y-Z can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10-11 degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.

  3. Geographic coordinate conversion - Wikipedia

    en.wikipedia.org/wiki/Geographic_coordinate...

    Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems. In geodesy, geographic coordinate conversion is defined as translation among different coordinate formats or map projections all referenced to the same geodetic datum. [1]

  4. Earth-centered inertial - Wikipedia

    en.wikipedia.org/wiki/Earth-centered_inertial

    Earth-centered inertial (ECI) coordinate frames have their origins at the center of mass of Earth and are fixed with respect to the stars. [1] " I" in "ECI" stands for inertial (i.e. "not accelerating "), in contrast to the "Earth-centered – Earth-fixed" ( ECEF ) frames, which remains fixed with respect to Earth's surface in its rotation ...

  5. Earth orientation parameters - Wikipedia

    en.wikipedia.org/wiki/Earth_Orientation_Parameters

    Due to the very slow pole motion of the Earth, the Celestial Ephemeris Pole (CEP, or celestial pole) does not stay still on the surface of the Earth.The Celestial Ephemeris Pole is calculated from observation data, and is averaged, so it differs from the instantaneous rotation axis by quasi-diurnal terms, which are as small as under 0.01" (see [6]).

  6. International Terrestrial Reference System and Frame

    en.wikipedia.org/wiki/International_Terrestrial...

    BeiDou Coordinate System, China Terrestrial Reference Frame (CTRF) 2000 = ITRF97 at epoch 2000.0; own implementation. GLONASS PZ-90.11 is nominally its own system, but is quite close to ITRF and uses many of the same techniques. [2] National systems: United States: WGS 84 (see above); domestic use is mainly based on NAD 83 instead.

  7. Terrestrial Time - Wikipedia

    en.wikipedia.org/wiki/Terrestrial_Time

    TT differs from Geocentric Coordinate Time (TCG) by a constant rate. Formally it is defined by the equation = +, where TT and TCG are linear counts of SI seconds in Terrestrial Time and Geocentric Coordinate Time respectively, is the constant difference in the rates of the two time scales, and is a constant to resolve the epochs (see below).

  8. Geodetic coordinates - Wikipedia

    en.wikipedia.org/wiki/Geodetic_coordinates

    Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).

  9. Ephemeris - Wikipedia

    en.wikipedia.org/wiki/Ephemeris

    In astronomy and celestial navigation, an ephemeris (/ ɪ ˈ f ɛ m ər ɪ s /; pl. ephemerides / ˌ ɛ f ə ˈ m ɛr ɪ ˌ d iː z /; from Latin ephemeris 'diary', from Ancient Greek ἐφημερίς (ephēmerís) 'diary, journal') [1] [2] [3] is a book with tables that gives the trajectory of naturally occurring astronomical objects and artificial satellites in the sky, i.e., the position ...