When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .

  3. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient, when applied to a sample, is commonly represented by and may be referred to as the sample correlation coefficient or the sample Pearson correlation coefficient. We can obtain a formula for r x y {\displaystyle r_{xy}} by substituting estimates of the covariances and variances based on a sample into the formula ...

  4. Correlogram - Wikipedia

    en.wikipedia.org/wiki/Correlogram

    For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram . The correlogram is a commonly used tool for checking randomness in a data set .

  5. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    If F(r) is the Fisher transformation of r, the sample Spearman rank correlation coefficient, and n is the sample size, then z = n − 3 1.06 F ( r ) {\displaystyle z={\sqrt {\frac {n-3}{1.06}}}F(r)} is a z -score for r , which approximately follows a standard normal distribution under the null hypothesis of statistical independence ( ρ = 0 ).

  6. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    where T is the sample size, is the residual and is the row of the design matrix, and is the Bartlett kernel [8] and can be thought of as a weight that decreases with increasing separation between samples. Disturbances that are farther apart from each other are given lower weight, while those with equal subscripts are given a weight of 1.

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Given a sample set, one can compute the studentized residuals and compare these to the expected frequency: points that fall more than 3 standard deviations from the norm are likely outliers (unless the sample size is significantly large, by which point one expects a sample this extreme), and if there are many points more than 3 standard ...

  8. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  9. G*Power - Wikipedia

    en.wikipedia.org/wiki/G*Power

    A priori analyses are one of the most commonly used analyses in research and calculate the needed sample size in order to achieve a sufficient power level and requires inputted values for alpha and effect size. Compromise analyses find implied power based on the beta/alpha ratio, or q, and inputted values for effect size and sample size.