Search results
Results From The WOW.Com Content Network
Some versions of the Copenhagen interpretation reject the idea that a wave function can be assigned to a physical system that meets the everyday definition of "cat"; in this view, the correct quantum-mechanical description of the cat-and-particle system must include a superselection rule.
The consistent histories interpretation generalizes the conventional Copenhagen interpretation and attempts to provide a natural interpretation of quantum cosmology. The theory is based on a consistency criterion that allows the history of a system to be described so that the probabilities for each history obey the additive rules of classical ...
Niels Bohr never mentions wave function collapse in his published work, but he repeatedly cautioned that we must give up a "pictorial representation". Despite the differences between Bohr and Heisenberg, their views are often grouped together as the "Copenhagen interpretation", of which wave function collapse is regarded as a key feature. [19]
Popper's experiment of 1980 exploits couples of entangled particles, in order to put to the test Heisenberg's uncertainty principle. [6] [8]Indeed, Popper maintains: "I wish to suggest a crucial experiment to test whether knowledge alone is sufficient to create 'uncertainty' and, with it, scatter (as is contended under the Copenhagen interpretation), or whether it is the physical situation ...
Interpretations of quantum mechanics now mostly fall into the categories of collapse theories (including the Copenhagen interpretation), hidden variables ("Bohm-like"), many-worlds ("Everettian") and quantum information approaches. While collapse theories continue to be seen as the default or mainstream position, there is no longer any clear ...
The Copenhagen interpretation of diffraction, especially in the viewpoint of Niels Bohr, puts weight on the doctrine of wave–particle duality. In this view, a particle that is diffracted by a diffractive object, such as for example a crystal, is regarded as really and physically behaving like a wave, split into components, more or less ...
The Copenhagen interpretation is that when a laboratory device observes part of an entangled state, There's a wave function collapse where the other pieces of the entangled function now have new distributions. That's the essence of non-localism. By contrast, the Ensemble interpretation is local.
In the orthodox Copenhagen interpretation, quantum mechanics predicts only the probabilities for different observed experimental outcomes. What constitutes an observer or an observation is not directly specified by the theory, and the behavior of a system under measurement and observation is completely different from its usual behavior: the wavefunction that describes a system spreads out into ...