When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  3. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠, ⁠ ⁠, ⁠ ⁠. ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, = (+ +), the area ⁠ ⁠ is [1]

  4. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    If the lengths of the three sides are known then Heron's formula can be used: () () where a, b, c are the sides of the triangle, and = (+ +) is half of its perimeter. [2] If an angle and its two included sides are given, the area is 1 2 a b sin ⁡ ( C ) {\displaystyle {\tfrac {1}{2}}ab\sin(C)} where C is the given angle and a and b are its ...

  5. Heronian triangle - Wikipedia

    en.wikipedia.org/wiki/Heronian_triangle

    In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .

  6. Base (geometry) - Wikipedia

    en.wikipedia.org/wiki/Base_(geometry)

    The area of a triangle is its half of the product of the base times the height (length of the altitude). For a triangle A B C {\displaystyle \triangle ABC} with opposite sides a , b , c , {\displaystyle a,b,c,} if the three altitudes of the triangle are called h a , h b , h c , {\displaystyle h_{a},h_{b},h_{c},} the area is:

  7. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  8. Semiperimeter - Wikipedia

    en.wikipedia.org/wiki/Semiperimeter

    One of the triangle area formulas involving the semiperimeter also applies to tangential quadrilaterals, which have an incircle and in which (according to Pitot's theorem) pairs of opposite sides have lengths summing to the semiperimeter—namely, the area is the product of the inradius and the semiperimeter: =.

  9. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    Quarter-circular area [2] ... b = the sides of the cuboid's base c = the third side of the cuboid Right-rectangular pyramid: a, b = the sides of the base h = the ...