Search results
Results From The WOW.Com Content Network
MAPE puts a heavier penalty on negative errors, < than on positive errors. [9] As a consequence, when MAPE is used to compare the accuracy of prediction methods it is biased in that it will systematically select a method whose forecasts are too low.
The earliest reference to a similar formula appears to be Armstrong (1985, p. 348), where it is called "adjusted MAPE" and is defined without the absolute values in the denominator. It was later discussed, modified, and re-proposed by Flores (1986).
It was proposed in 2005 by statistician Rob J. Hyndman and Professor of Decision Sciences Anne B. Koehler, who described it as a "generally applicable measurement of forecast accuracy without the problems seen in the other measurements."
This page was last edited on 21 December 2024, at 20:12 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
where a t is the actual value of the quantity being forecast, and f t is the forecast. MAD is the mean absolute deviation. The formula for the MAD is: = | | where n is the number of periods. Plugging this in, the entire formula for tracking signal is:
where is the actual value of the quantity being forecast, is the forecast, and is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a ...
Michael Fish - A few hours before the Great Storm of 1987 broke, on 15 October 1987, he said during a forecast: "Earlier on today, apparently, a woman rang the BBC and said she heard there was a hurricane on the way.
A typical measure of bias of forecasting procedure is the arithmetic mean or expected value of the forecast errors, but other measures of bias are possible. For example, a median-unbiased forecast would be one where half of the forecasts are too low and half too high: see Bias of an estimator .