Search results
Results From The WOW.Com Content Network
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.
In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.
For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...
An abundant number which is not the multiple of an abundant number or perfect number (i.e. all its proper divisors are deficient) is called a primitive abundant number An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower ...
Zelinsky proved that no three consecutive integers can all be refactorable. [1] Colton proved that no refactorable number is perfect . The equation gcd ( n , x ) = τ ( n ) {\displaystyle \gcd(n,x)=\tau (n)} has solutions only if n {\displaystyle n} is a refactorable number, where gcd {\displaystyle \gcd } is the greatest common divisor function.
Colossally abundant numbers are one of several classes of integers that try to capture the notion of having many divisors. For a positive integer n, the sum-of-divisors function σ(n) gives the sum of all those numbers that divide n, including 1 and n itself. Paul Bachmann showed that on average, σ(n) is around π 2 n / 6. [6]
M = 15 The 15 perfect matchings of K 6 15 as the difference of two positive squares (in orange).. 15 is: The eighth composite number and the sixth semiprime and the first odd and fourth discrete semiprime; [1] its proper divisors are 1, 3, and 5, so the first of the form (3.q), [2] where q is a higher prime.