Search results
Results From The WOW.Com Content Network
3. In set-builder notation, it is used as a separator meaning "such that"; see { : }. / 1. Denotes division and is read as divided by or over. Often replaced by a horizontal bar. For example, 3 / 2 or . 2. Denotes a quotient structure.
For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.
In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
Integer arithmetic is not closed under division. This means that when dividing one integer by another integer, the result is not always an integer. For instance, 7 divided by 2 is not a whole number but 3.5. [73] One way to ensure that the result is an integer is to round the result to a whole number.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In the division of 43 by 5, we have: 43 = 8 × 5 + 3, so 3 is the least positive remainder. We also have that: 43 = 9 × 5 − 2, and −2 is the least absolute remainder. These definitions are also valid if d is negative, for example, in the division of 43 by −5, 43 = (−8) × (−5) + 3, and 3 is the least positive remainder, while,