When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy density - Wikipedia

    en.wikipedia.org/wiki/Energy_density

    In terms of density, m = ρV, where ρ is the volumetric mass density, V is the volume occupied by the mass. This energy can be released by the processes of nuclear fission (~ 0.1%), nuclear fusion (~ 1%), or the annihilation of some or all of the matter in the volume V by matter–antimatter collisions (100%). [citation needed]

  3. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Energy density is the amount of energy per mass or volume of food. The energy density of a food can be determined from the label by dividing the energy per serving (usually in kilojoules or food calories) by the serving size (usually in grams, milliliters or fluid ounces). An energy unit commonly used in nutritional contexts within non-metric ...

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Mass current density j m = ... E = total volume energy density; U = internal energy per unit mass of fluid; ... Physics for Scientists and Engineers: ...

  5. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The mathematical by-product of this calculation is the massenergy equivalence formula, that mass and energy are essentially the same thing: [14]: 51 [15]: 121 = = At a low speed (v ≪ c), the relativistic kinetic energy is approximated well by the classical kinetic energy.

  6. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Mass is also equivalent to a certain amount of energy, and likewise always appears associated with it, as described in massenergy equivalence. The formula E = mc 2, derived by Albert Einstein (1905) quantifies the relationship between relativistic mass and energy within the concept of special

  7. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    The name "density of states effective mass" is used since the above expression for N C is derived via the density of states for a parabolic band. In practice, the effective mass extracted in this way is not quite constant in temperature (N C does not exactly vary as T 3/2). In silicon, for example, this effective mass varies by a few percent ...

  8. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    In particle physics and physical cosmology, the Planck scale is an energy scale around 1.22 × 10 28 eV (the Planck energy, corresponding to the energy equivalent of the Planck mass, 2.176 45 × 10 −8 kg) at which quantum effects of gravity become significant.

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the massenergy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.