When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Mass–energy equivalence arose from special relativity as a paradox described by the French polymath Henri Poincaré (1854–1912). [4] Einstein was the first to propose the equivalence of mass and energy as a general principle and a consequence of the symmetries of space and time.

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  4. Einstein's thought experiments - Wikipedia

    en.wikipedia.org/wiki/Einstein's_thought_experiments

    Einstein demonstrated that Poincaré's artifice was superfluous. Rather, he argued that mass-energy equivalence was a necessary and sufficient condition to resolve the paradox. In his demonstration, Einstein provided a derivation of mass-energy equivalence that was distinct from his original derivation.

  5. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    Because of the relativistic equivalence between mass and energy, the eV is also sometimes used as a unit of mass. The Hartree (the atomic unit of energy) is commonly used in the field of computational chemistry since such units arise directly from the calculation algorithms without any need for conversion.

  6. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy). The term "relativistic mass" tends not to be used in particle and nuclear physics and is often avoided by writers on special relativity, in favor of ...

  7. Annus mirabilis papers - Wikipedia

    en.wikipedia.org/wiki/Annus_Mirabilis_papers

    The mass of a body is a measure of its energy-content; if the energy changes by L, the mass changes in the same sense by L/(9 × 10 20), the energy being measured in ergs, and the mass in grammes. If the theory corresponds to the facts, radiation conveys inertia between the emitting and absorbing bodies.

  8. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of mass–energy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...

  9. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    Mass–energy equivalence also holds in macroscopic systems. [35] For example, if one takes exactly one kilogram of ice, and applies heat, the mass of the resulting melt-water will be more than a kilogram: it will include the mass from the thermal energy (latent heat) used to melt the ice; this follows from the conservation of energy. [36]