Search results
Results From The WOW.Com Content Network
Stars evolve because of changes in their composition (the abundance of their constituent elements) over their lifespans, first by burning hydrogen (main sequence star), then helium (horizontal branch star), and progressively burning higher elements. However, this does not by itself significantly alter the abundances of elements in the universe ...
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution
The formation of stars is of particular interest. Research published in 2009 presents spectroscopic observations of so-called "young stellar objects" viewed in the Large Magellanic Cloud with the Spitzer Space Telescope. This research suggests that water, or, more specifically, ice, plays a large role in the formation of these eventual stars [3]
In the upper diagram, the isochrones are curves along which stars of a certain age are expected to lie, assuming that all stars evolve along the Hayashi track. An isochrone is created by taking stars of every conceivable mass, evolving them forwards to the same age, and plotting all of them on the color–magnitude diagram.
Although the Sun is a star, its photosphere has a low enough temperature of 6,000 K (5,730 °C; 10,340 °F), and therefore molecules can form. Water has been found on the Sun, and there is evidence of H 2 in white dwarf stellar atmospheres. [2] [4] Cooler stars include absorption band spectra that are
Typical boundary conditions set the values of the observable parameters appropriately at the surface (=) and center (=) of the star: () =, meaning the pressure at the surface of the star is zero; () =, there is no mass inside the center of the star, as required if the mass density remains finite; () =, the total mass of the star is the star's ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
However, the current rate of galaxy mergers does not explain how all galaxies move from the "blue cloud" to the "red sequence". It also does not explain how star formation ceases in galaxies. Theories of galaxy evolution must therefore be able to explain how star formation turns off in galaxies. This phenomenon is called galaxy "quenching". [16]