When.com Web Search

  1. Ads

    related to: multivariate gaussian pdf generator program

Search results

  1. Results From The WOW.Com Content Network
  2. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17]

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...

  4. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    Multivariate Kernel Smoothing and Its Applications is a comprehensive book on many topics in kernel smoothing, including density estimation. Includes ks package code snippets in R. kde2d.m A Matlab function for bivariate kernel density estimation. libagf A C++ library for multivariate, variable bandwidth kernel density estimation.

  5. Complex normal distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_normal_distribution

    The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance /. [3]: p. 494 [4]: pp. 501 Formally,

  6. Box–Muller transform - Wikipedia

    en.wikipedia.org/wiki/Box–Muller_transform

    Visualisation of the Box–Muller transform — the coloured points in the unit square (u 1, u 2), drawn as circles, are mapped to a 2D Gaussian (z 0, z 1), drawn as crosses. The plots at the margins are the probability distribution functions of z0 and z1. z0 and z1 are unbounded; they appear to be in [−2.5, 2.5] due to the choice of the ...

  7. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...