Search results
Results From The WOW.Com Content Network
In a programming language, an evaluation strategy is a set of rules for evaluating expressions. [1] The term is often used to refer to the more specific notion of a parameter-passing strategy [2] that defines the kind of value that is passed to the function for each parameter (the binding strategy) [3] and whether to evaluate the parameters of a function call, and if so in what order (the ...
In programming language theory, lazy evaluation, or call-by-need, [1] is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which avoids repeated evaluations (by the use of sharing). [2] [3] The benefits of lazy evaluation include:
In some programming languages, eval, short for evaluate, is a function which evaluates a string as though it were an expression in the language, and returns a result; in others, it executes multiple lines of code as though they had been included instead of the line including the eval.
Some languages define a special character as a terminator while some, called line-oriented, rely on the newline. Typically, a line-oriented language includes a line continuation feature whereas other languages have no need for line continuation since newline is treated like other whitespace .
Most modern programming languages provide features to define and call functions, including syntax for accessing such features, including: Delimit the implementation of a function from the rest of the program; Assign an identifier, name, to a function; Define formal parameters with a name and data type for each; Assign a data type to the return ...
A snippet of Java code with keywords highlighted in bold blue font. The syntax of Java is the set of rules defining how a Java program is written and interpreted. The syntax is mostly derived from C and C++. Unlike C++, Java has no global functions or variables, but has data members which are also regarded as global variables.
A strict programming language is a programming language that only allows strict functions (functions whose parameters must be evaluated completely before they may be called) to be defined by the user. A non-strict programming language allows the user to define non-strict functions, and hence may allow lazy evaluation.
Use of futures may be implicit (any use of the future automatically obtains its value, as if it were an ordinary reference) or explicit (the user must call a function to obtain the value, such as the get method of java.util.concurrent.Futurein Java). Obtaining the value of an explicit future can be called stinging or forcing. Explicit futures ...