Search results
Results From The WOW.Com Content Network
In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders , so that one random variable A {\displaystyle A} may be neither stochastically greater than, less than, nor equal to another random variable B {\displaystyle B} .
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
A random tree is a tree or arborescence that is formed by a stochastic process. In a large range of random graphs of order n and size M(n) the distribution of the number of tree components of order k is asymptotically Poisson.
The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...
Stochastic dominance is a partial order between random variables. [1] [2] It is a form of stochastic ordering.The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers.
The notation () indicates an autoregressive model of order p.The AR(p) model is defined as = = + where , …, are the parameters of the model, and is white noise. [1] [2] This can be equivalently written using the backshift operator B as
The Bessel process of order n is the real-valued process X given (when n ≥ 2) by = ‖ ‖, where ||·|| denotes the Euclidean norm in R n and W is an n-dimensional Wiener process (Brownian motion). For any n, the n-dimensional Bessel process is the solution to the stochastic differential equation (SDE)
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.