Search results
Results From The WOW.Com Content Network
"First conditional" or "conditional I" refers to a pattern used in predictive conditional sentences, i.e. those that concern consequences of a probable future event (see Types of conditional sentence). In the basic first conditional pattern, the condition is expressed using the present tense (having future meaning in this context).
A conditional sentence is a sentence in a natural language that expresses that one thing is contingent on another, e.g., "If it rains, the picnic will be cancelled." They are so called because the impact of the sentence’s main clause is conditional on a subordinate clause.
For example, the first-order formula "if x is a philosopher, then x is a scholar", is a conditional statement with "x is a philosopher" as its hypothesis, and "x is a scholar" as its conclusion, which again needs specification of x in order to have a definite truth value.
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements.For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
A "first conditional" sentence expresses a future circumstance conditional on some other future circumstance. It uses the present tense (with future reference) in the condition clause, and the future with will (or some other expression of future) in the main clause: If he comes late, I will be angry. A "second conditional" sentence expresses a ...
A mixed hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example, If P, then Q. P. ∴ Q. In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent.
Example 1. One way to demonstrate the invalidity of this argument form is with a counterexample with true premises but an obviously false conclusion. For example: If someone lives in San Diego, then they live in California. Joe lives in California. Therefore, Joe lives in San Diego. There are many places to live in California other than San Diego.