Search results
Results From The WOW.Com Content Network
Shell integration (the shell method in integral calculus) is a method for calculating the volume of a solid of revolution, when integrating along an axis perpendicular to the axis of revolution. This is in contrast to disc integration which integrates along the axis parallel to the axis of revolution.
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
Disc integration, also known in integral calculus as the disc method, is a method for calculating the volume of a solid of revolution of a solid-state material when integrating along an axis "parallel" to the axis of revolution. This method models the resulting three-dimensional shape as a stack of an infinite number of discs of varying radius ...
Lebesgue integration; Contour integration; Integral of inverse functions; Integration by; Parts; Discs; Cylindrical shells; Substitution (trigonometric, tangent half-angle, Euler) Euler's formula; Partial fractions (Heaviside's method) Changing order; Reduction formulae; Differentiating under the integral sign; Risch algorithm
The tangent half-angle substitution relates an angle to the slope of a line. Introducing a new variable = , sines and cosines can be expressed as rational functions of , and can be expressed as the product of and a rational function of , as follows: = +, = +, = +.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Integration by parts is often used in harmonic analysis, particularly Fourier analysis, to show that quickly oscillating integrals with sufficiently smooth integrands decay quickly. The most common example of this is its use in showing that the decay of function's Fourier transform depends on the smoothness of that function, as described below.
Afrikaans; Anarâškielâ; العربية; Azərbaycanca; Башҡортса; Беларуская; Български; Bosanski; Català; Чӑвашла; Čeština