Search results
Results From The WOW.Com Content Network
Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become magnetized. Once magnetized, the magnet will stay magnetized indefinitely.
This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]
The shape of the hysteresis loop has a strong dependence on the angle between the magnetic field and the easy axis (Figure 3). If the two are parallel (θ = 0), the hysteresis loop is at its biggest (with m h = h s = 1 in normalized units). The magnetization starts parallel to the field and does not rotate until it becomes unstable and jumps to ...
Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.
A sample of iron, for example, may have evenly distributed magnetic domains, resulting in a net magnetic moment of zero. Mathematically similar models seem to have been independently developed in other fields of science and engineering. One notable example is the model of capillary hysteresis in porous materials developed by Everett and co ...
Typically the coercivity of a magnetic material is determined by measurement of the magnetic hysteresis loop, also called the magnetization curve, as illustrated in the figure above. The apparatus used to acquire the data is typically a vibrating-sample or alternating-gradient magnetometer. The applied field where the data line crosses zero is ...
The geometry of a Rowland's ring is usually a toroid of magnetic material around which is closely wound a magnetization coil consisting of a large number of windings to magnetize the material, and a sampling coil consisting of a smaller number of windings to sample the induced magnetic flux.
The alternating magnetic field induces an electric field in the pickup coils of the VSM. [4] The current is proportional to the magnetization of the sample - the greater the induced current, the greater the magnetization. As a result, typically a hysteresis curve will be recorded [5] and from there the magnetic properties of the sample can be ...