Search results
Results From The WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Stability is a measure of the sensitivity to rounding errors of a given numerical procedure; by contrast, the condition number of a function for a given problem indicates the inherent sensitivity of the function to small perturbations in its input and is independent of the implementation used to solve the problem.
This type comes from numerical errors and numerical approximations per implementation of the computer model. Most models are too complicated to solve exactly. For example, the finite element method or finite difference method may be used to approximate the solution of a partial differential equation (which introduces numerical errors).
The coefficients found by Fehlberg for Formula 1 (derivation with his parameter α 2 =1/3) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages:
When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers (which in theory have infinitely many digits), one of the goals of numerical analysis is to estimate computation errors. [5] Computation errors, also called numerical errors, include both truncation errors and roundoff errors.
The following examples are known as accidents caused by numerical errors: Failure of intercepting missiles in the Gulf War (1991) [7] Failure of the Ariane 5 rocket (1996) [8] Mistakes in election result totalization [9]
Given numbers and , the naive attempt to compute the mathematical function by the floating-point arithmetic ( ()) is subject to catastrophic cancellation when and are close in magnitude, because the subtraction can expose the rounding errors in the squaring.