Ad
related to: handshaking lemma theorem definition geometrystudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In graph theory, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. [ 1 ]
The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group of people, the number of people who have shaken hands with an odd ...
In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands; for this reason, the result is known as the handshaking lemma. To prove this by double counting, let () be the degree of vertex . The number of vertex-edge incidences in the graph may be ...
From the handshaking lemma, a k-regular graph with odd k has an even number of vertices. A theorem by Nash-Williams says that every k ‑regular graph on 2k + 1 vertices has a Hamiltonian cycle. Let A be the adjacency matrix of a graph. Then the graph is regular if and only if = (, …,) is an eigenvector of A. [2]
This following is a list of lemmas (or, "lemmata", i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms , list of theorems and list of conjectures .
The total degree is the sum of the degrees of all vertices; by the handshaking lemma it is an even number. The degree sequence is the collection of degrees of all vertices, in sorted order from largest to smallest. In a directed graph, one may distinguish the in-degree (number of incoming edges) and out-degree (number of outgoing edges).
The undirected route inspection problem can be solved in polynomial time by an algorithm based on the concept of a T-join.Let T be a set of vertices in a graph. An edge set J is called a T-join if the collection of vertices that have an odd number of incident edges in J is exactly the set T.
Pigeon-hole messageboxes at Stanford University. Dirichlet published his works in both French and German, using either the German Schubfach or the French tiroir.The strict original meaning of these terms corresponds to the English drawer, that is, an open-topped box that can be slid in and out of the cabinet that contains it.