When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.

  3. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  4. Arg max - Wikipedia

    en.wikipedia.org/wiki/Arg_max

    In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively. [note 1] While the arguments are defined over the domain of a function, the output is part of its codomain.

  5. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    [1] [2] This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c. Polynomials and functions of the form x a [ edit ]

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  7. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Properties of a point on a function [ edit ] Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum ), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [ 1 ]

  8. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.

  9. Maximum principle - Wikipedia

    en.wikipedia.org/wiki/Maximum_principle

    The weak maximum principle, in this setting, says that for any open precompact subset M of the domain of u, the maximum of u on the closure of M is achieved on the boundary of M. The strong maximum principle says that, unless u is a constant function, the maximum cannot also be achieved anywhere on M itself.