When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    The top row is a series of plots using the escape time algorithm for 10000, 1000 and 100 maximum iterations per pixel respectively. The bottom row uses the same maximum iteration values but utilizes the histogram coloring method. Notice how little the coloring changes per different maximum iteration counts for the histogram coloring method plots.

  3. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram. Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method. [3]

  4. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R , [ 2 ] Python [ 3 ] and Microsoft Excel where it is the default bin selection method.

  5. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...

  6. NEST (software) - Wikipedia

    en.wikipedia.org/wiki/NEST_(software)

    NEST primary user interface is PyNEST, a Python package that controls the NEST simulation kernel. PyNEST aims at easy usability and seamless interaction with Python and its libraries. PyNN is a simulator independent language for neural simulations, which supports NEST as well as BRIAN, NEURON, as well as neuromorphic hardware.

  7. Fractal flame - Wikipedia

    en.wikipedia.org/wiki/Fractal_flame

    This involves creating a histogram larger than the image so each pixel has multiple data points to pull from. For example, create a histogram with 300×300 cells in order to draw a 100×100 px image; each pixel would use a 3×3 group of histogram buckets to calculate its value. For each pixel (x,y) in the final image, do the following computations:

  8. Simulation decomposition - Wikipedia

    en.wikipedia.org/wiki/Simulation_decomposition

    SimDec is based on a histogram, thus, for binary or categorical output variables, the visualization would be very limited (e.g., only a few bins). The more input variables one selects for the decomposition, the less readable the histogram becomes. Only cases with two and three input variables are presented in. [2]

  9. Data and information visualization - Wikipedia

    en.wikipedia.org/wiki/Data_and_information...

    The most fundamental data analysis approaches are visualization (histograms, scatter plots, surface plots, tree maps, parallel coordinate plots, etc.), statistics (hypothesis test, regression, PCA, etc.), data mining (association mining, etc.), and machine learning methods (clustering, classification, decision trees, etc.). Among these ...