Search results
Results From The WOW.Com Content Network
In chemistry, thermochemical cycles combine solely heat sources (thermo) with chemical reactions to split water into its hydrogen and oxygen components. [1] The term cycle is used because aside of water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled.
The sulfur–iodine cycle (S–I cycle) is a series of thermochemical processes used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.
Water cycle – moves water continuously on, above and below the surface shifting between states of liquid, solution, ice and vapour; Methane cycle – moves methane between geological and biogeochemical sources and reactions in the atmosphere; Hydrogen cycle – a biogeochemical cycle brought about by a combination of biological and ...
A chain reaction is an example of a complex mechanism, in which the propagation steps form a closed cycle. In a chain reaction, the intermediate produced in one step generates an intermediate in another step. Intermediates are called chain carriers. Sometimes, the chain carriers are radicals, they can be ions as well.
In scientific literature, the Mehler reaction often is used interchangeably with the Water-Water Cycle [2] to refer to the formation of H 2 O 2 by photosynthesis. Sensu stricto, the Water Water Cycle encompasses the Hill reaction, in which water is split to form oxygen, as well as the Mehler Reaction, in which oxygen is reduced to form H 2 O
The fluorine cycle is the series of biogeochemical processes through which fluorine moves through the lithosphere, hydrosphere, atmosphere, and biosphere. Fluorine originates from the Earth’s crust, and its cycling between various sources and sinks is modulated by a variety of natural and anthropogenic processes.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Some metabolic pathways flow in a 'cycle' wherein each component of the cycle is a substrate for the subsequent reaction in the cycle, such as in the Krebs Cycle (see below). Anabolic and catabolic pathways in eukaryotes often occur independently of each other, separated either physically by compartmentalization within organelles or separated ...