Search results
Results From The WOW.Com Content Network
Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is
matrix is symmetric matrix.; matrix is persymmetric matrix, i.e. it is symmetric with respect to the northeast-to-southwest diagonal too.; Every one row and column of matrix consists all n elements of given vector without repetition.
Gramian matrix: The symmetric matrix of the pairwise inner products of a set of vectors in an inner product space: Hessian matrix: The square matrix of second partial derivatives of a function of several variables: Householder matrix: The matrix of a reflection with respect to a hyperplane passing through the origin: Jacobian matrix
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
Among complex matrices, all unitary, Hermitian, and skew-Hermitian matrices are normal, with all eigenvalues being unit modulus, real, and imaginary, respectively. Likewise, among real matrices, all orthogonal, symmetric, and skew-symmetric matrices are normal, with all eigenvalues being complex conjugate pairs on the unit circle, real, and imaginary, respectively.
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...
A symmetric matrix can always be transformed in this way into a diagonal matrix which has only entries , + , along the diagonal. Sylvester's law of inertia states that the number of diagonal entries of each kind is an invariant of A {\displaystyle A} , i.e. it does not depend on the matrix S {\displaystyle S} used.