Search results
Results From The WOW.Com Content Network
The bundle TP/G is called the bundle of principal connections (Kobayashi 1957). A section Γ of dπ:TP/G→TM such that Γ : TM → TP/G is a linear morphism of vector bundles over M, can be identified with a principal connection in P. Conversely, a principal connection as defined above gives rise to such a section Γ of TP/G.
This theory is most succinctly captured by passing to the principal bundle connection on the frame bundle of and using the theory of principal bundles. Each of the above examples can be seen as special cases of this construction: the dual bundle corresponds to the inverse transpose (or inverse adjoint) representation, the tensor product to the ...
A principal -bundle, where denotes any topological group, is a fiber bundle: together with a continuous right action such that preserves the fibers of (i.e. if then for all ) and acts freely and transitively (meaning each fiber is a G-torsor) on them in such a way that for each and , the map sending to is a homeomorphism.
A principal connection on the principal bundle Q induces a connection on any associated vector bundle: in particular on the tangent bundle. A linear connection ∇ on TM arising in this way is said to be compatible with Q. Connections compatible with Q are also called adapted connections. Concretely speaking, adapted connections can be ...
One example of a principal bundle is the frame bundle. If for each two points b 1 and b 2 in the base, the corresponding fibers p −1 (b 1) and p −1 (b 2) are vector spaces of the same dimension, then the bundle is a vector bundle if the appropriate conditions of local triviality are satisfied. The tangent bundle is an example of a vector ...
A principal bundle connection form may be thought of as a projection operator on the tangent bundle of the principal bundle . The kernel of the connection form is given by the horizontal subspaces for the associated Ehresmann connection. Suppose that E is a smooth principal G-bundle over M.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Let π : P → M be a principal bundle with a structure Lie group G. A principal connection on P usually is described by a Lie algebra-valued connection one-form on P. At the same time, a principal connection on P is a global section of the jet bundle J 1 P → P which is equivariant with respect to the canonical right action of G in P.