Search results
Results From The WOW.Com Content Network
Here the dependent variable (and variable of most interest) was the annual mean sea level at a given location for which a series of yearly values were available. The primary independent variable was time. Use was made of a covariate consisting of yearly values of annual mean atmospheric pressure at sea level.
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
The definition extends naturally to more than two random variables. We say that n {\displaystyle n} random variables X 1 , … , X n {\displaystyle X_{1},\ldots ,X_{n}} are i.i.d. if they are independent (see further Independence (probability theory) § More than two random variables ) and identically distributed, i.e. if and only if
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) , (,) satisfies , (,) = (),
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The independent variables are mentioned in the list of arguments that the function takes, whereas the parameters are not. For example, in the logarithmic function f ( x ) = log b ( x ) , {\displaystyle f(x)=\log _{b}(x),} the base b {\displaystyle b} is considered a parameter.