When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.

  3. Deficient number - Wikipedia

    en.wikipedia.org/wiki/Deficient_number

    In number theory, a deficient number or defective number is a positive integer n for which the sum of divisors of n is less than 2n. Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient.

  4. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

  5. 15 (number) - Wikipedia

    en.wikipedia.org/wiki/15_(number)

    M = 15 The 15 perfect matchings of K 6 15 as the difference of two positive squares (in orange).. 15 is: The eighth composite number and the sixth semiprime and the first odd and fourth discrete semiprime; [1] its proper divisors are 1, 3, and 5, so the first of the form (3.q), [2] where q is a higher prime.

  6. Regular number - Wikipedia

    en.wikipedia.org/wiki/Regular_number

    Equivalently, they are the numbers whose only prime divisors are 2, 3, and 5. As an example, 60 2 = 3600 = 48 × 75, so as divisors of a power of 60 both 48 and 75 are regular. These numbers arise in several areas of mathematics and its applications, and have different names coming from their different areas of study.

  7. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.

  8. Refactorable number - Wikipedia

    en.wikipedia.org/wiki/Refactorable_number

    Zelinsky proved that no three consecutive integers can all be refactorable. [1] Colton proved that no refactorable number is perfect . The equation gcd ( n , x ) = τ ( n ) {\displaystyle \gcd(n,x)=\tau (n)} has solutions only if n {\displaystyle n} is a refactorable number, where gcd {\displaystyle \gcd } is the greatest common divisor function.

  9. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The numbers that these two lists have in common are the common divisors of 54 and 24, that is, ,,, Of these, the greatest is 6, so it is the greatest common divisor: (,) = Computing all divisors of the two numbers in this way is usually not efficient, especially for large numbers that have many divisors.