When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...

  3. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Fatigue life scatter tends to increase for longer fatigue lives. Damage is irreversible. Materials do not recover when rested. Fatigue life is influenced by a variety of factors, such as temperature, surface finish, metallurgical microstructure, presence of oxidizing or inert chemicals, residual stresses, scuffing contact , etc.

  4. Titanium biocompatibility - Wikipedia

    en.wikipedia.org/wiki/Titanium_biocompatibility

    Titanium is considered the most biocompatible metal due to its resistance to corrosion from bodily fluids, bio-inertness, capacity for osseointegration, and high fatigue limit. Titanium's ability to withstand the harsh bodily environment is a result of the protective oxide film that forms naturally in the presence of oxygen.

  5. Basquin's law - Wikipedia

    en.wikipedia.org/wiki/Basquin's_law

    Basquin's law of fatigue states that the lifetime of the system has a power-law dependence on the external load amplitude, , where the exponent has a strong material dependence. [1] It is useful in expressing S-N relationships .

  6. For premium support please call: 800-290-4726 more ways to reach us

  7. Critical plane analysis - Wikipedia

    en.wikipedia.org/wiki/Critical_plane_analysis

    Animation showing a series of crack orientations, each of which is evaluated for fatigue life during Critical plane analysis The chief advantage of critical plane analysis over earlier approaches like Sines rule , or like correlation against maximum principal stress or strain energy density , is the ability to account for damage on specific ...

  8. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  9. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    ε f ' is an empirical constant known as the fatigue ductility coefficient defined by the strain intercept at 2N =1; c is an empirical constant known as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7. Small c results in long fatigue life. ς f ' is a constant known as the fatigue strength coefficient