Search results
Results From The WOW.Com Content Network
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.
These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .
In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.
As every polynomial ring over a field is a unique factorization domain, every monic polynomial over a finite field may be factored in a unique way (up to the order of the factors) into a product of irreducible monic polynomials. There are efficient algorithms for testing polynomial irreducibility and factoring polynomials over finite fields.
In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields.In the original case, the ultrametric field of interest was essentially the field of formal Laurent series in the indeterminate X, i.e. the field of fractions of the formal power series ring [[]], over , where was the real number or complex ...
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...