Ads
related to: regenerative turbine pump vs centrifugal motor kit
Search results
Results From The WOW.Com Content Network
Different types of pumps are suitable for different applications, for example: a pump's maximum lift height also determines the applications it can be used for. Low-lift pumps are only suitable for the pumping of surface water (e.g., irrigation, drainage of lands, ...), while high-lift pumps allow deep water pumping (e.g., potable water pumping ...
A pump as turbine (PAT), also known as a pump in reverse, is an unconventional type of reaction water turbine, which behaves in a similar manner to that of a Francis turbine. The function of a PAT is comparable to that of any turbine , to convert kinetic and pressure energy of the fluid into mechanical energy of the runner.
Pumps - Pumps are another very popular turbomachine. Although there are very many different types of pumps, they all do the same thing. Pumps are used to move fluids around using some sort of mechanical power, from electric motors to full size diesel engines. Pumps have thousands of uses, and are the true basis to turbomachinery (Škorpík, 2017).
Also known as drag, friction, liquid-ring pump, peripheral, traction, turbulence, or vortex pumps, regenerative turbine pumps are a class of rotodynamic pump that operates at high head pressures, typically 4–20 bars (400–2,000 kPa; 58–290 psi). [26] The pump has an impeller with a number of vanes or paddles which spins in a cavity.
Like most pumps, a centrifugal pump converts rotational energy, often from a motor, to energy in a moving fluid. A portion of the energy goes into kinetic energy of the fluid. Fluid enters axially through eye of the casing, is caught up in the impeller blades, and is whirled tangentially and radially outward until it leaves through all ...
While centrifugal pumps impart momentum to the fluid by motion of blades, positive displacement pumps transfer fluid by variation in the size of the pump’s chamber. Centrifugal pumps can be of rotor or propeller types, whereas positive displacement pumps may be gear-based, piston-based, diaphragm-based, etc. As a general rule, centrifugal ...
Generally, axial pumps tend to give much lower pressures than centrifugal pumps, and a few bars is not uncommon. Their advantage is a much higher volumetric flowrate. For this reason they are common for pumping liquid hydrogen in rocket engines, because of its much lower density than other propellants which usually use centrifugal pump designs.
Most turbomolecular pumps employ multiple stages, each consisting of a quickly rotating rotor blade and stationary stator blade pair. The system is an axial compressor that puts energy into the gas, rather than a turbine, which takes energy out of a moving fluid to create rotary power, thus "turbomolecular pump" is a misnomer.