Search results
Results From The WOW.Com Content Network
A megaspore mother cell, or megasporocyte, is a diploid cell in plants in which meiosis will occur, resulting in the production of four haploid megaspores. At least one of the spores develop into haploid female gametophytes, the megagametophytes. [1] The megaspore mother cell arises within the megasporangium tissue.
During megasporogenesis, a diploid precursor cell, the megasporocyte or megaspore mother cell, undergoes meiosis to produce initially four haploid cells (the megaspores). [1] Angiosperms exhibit three patterns of megasporogenesis: monosporic, bisporic, and tetrasporic , also known as the Polygonum type, the Alisma type, and the Drusa type ...
The details of the process vary by species, but the process described here is common. This process starts with a single diploid megasporocyte in the nucleus. This megasporocyte undergoes meiotic cell division to form four cells that are haploid. Three cells die and one that is most distant from the micropyle develops into the megaspore.
A megasporocyte inside a megasporangium or ovule undergoes meiosis, producing four megaspores. Only one is a functional megaspore whereas the others stay dysfunctional or degenerate. The megaspore undergoes several mitotic divisions to develop into a female gametophyte (for example the seven-cell/eight-nuclei embryo sac in flowering plants).
Location of ovules inside a Helleborus foetidus flower. In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus (or remnant of the megasporangium), and the female gametophyte (formed from a haploid megaspore) in its center.
The megagametophyte, which is usually haploid, originates from the (usually diploid) megaspore mother cell, also called the megasporocyte. The next sequence of events varies, depending on the particular species, but in most species, the following events occur. The megasporocyte undergoes meiosis, producing four haploid megaspores.
Two single-celled haploid gametes, each containing n unpaired chromosomes, fuse to form a single-celled diploid zygote, which now contains n pairs of chromosomes, i.e. 2n chromosomes in total. [17] The single-celled diploid zygote germinates, dividing by the normal process , which maintains the number of chromosomes at 2n.
The haploid microspore is stressed to trigger the embryogenesis pathway and the resulting haploid embryo either doubles its genome spontaneously or with the help of chromosome doubling agents. Without this double haploid technology, conventional breeding methods would take several generations of selection to produce a homozygous line.