When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).

  3. Polynomial code - Wikipedia

    en.wikipedia.org/wiki/Polynomial_code

    A polynomial code is cyclic if and only if the generator polynomial divides . If the generator polynomial is primitive, then the resulting code has Hamming distance at least 3, provided that . In BCH codes, the generator polynomial is chosen to have specific roots in an extension field, in a way that achieves high Hamming distance.

  4. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x n − 1. Therefore, the polynomial code defined by g(x) is a cyclic code.

  5. Primitive polynomial - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial

    Download QR code; Print/export Download as PDF; Printable version; ... In different branches of mathematics, primitive polynomial may refer to:

  6. Category:Polynomials - Wikipedia

    en.wikipedia.org/wiki/Category:Polynomials

    Pidduck polynomials; Pincherle polynomials; Polylogarithmic function; Polynomial decomposition; Polynomial Diophantine equation; Polynomial evaluation; Polynomial expansion; Polynomial greatest common divisor; Polynomial identity testing; Polynomial interpolation; Polynomial long division; Polynomial matrix; Polynomial matrix spectral ...

  7. GF(2) - Wikipedia

    en.wikipedia.org/wiki/GF(2)

    GF(2) (also denoted , Z/2Z or /) is the finite field with two elements. [1] [a]GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual.

  8. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    A polynomial P with coefficients in a UFD R is then said to be primitive if the only elements of R that divide all coefficients of P at once are the invertible elements of R; i.e., the gcd of the coefficients is one. Primitivity statement: If R is a UFD, then the set of primitive polynomials in R[X] is closed under

  9. Lucky numbers of Euler - Wikipedia

    en.wikipedia.org/wiki/Lucky_numbers_of_Euler

    Since the polynomial can be written as k(k−1) + n, using the integers k with −(n−1) < k ≤ 0 produces the same set of numbers as 1 ≤ k < n. These polynomials are all members of the larger set of prime generating polynomials. Leonhard Euler published the polynomial k 2 − k + 41 which produces prime numbers for all integer values of k from