Search results
Results From The WOW.Com Content Network
In a photoionization detector, high-energy photons, typically in the vacuum ultraviolet (VUV) range, break molecules into positively charged ions. [2] As compounds enter the detector they are bombarded by high-energy UV photons and are ionized when they absorb the UV light, resulting in ejection of electrons and the formation of positively charged ions.
Appearance energy (also known as appearance potential) is the minimum energy that must be supplied to a gas phase atom or molecule in order to produce an ion. In mass spectrometry, it is accounted as the voltage to correspond for electron ionization. [1] This is the minimum electron energy that produces an ion. [2]
Above-threshold ionization (ATI) [7] is an extension of multi-photon ionization where even more photons are absorbed than actually would be necessary to ionize the atom. The excess energy gives the released electron higher kinetic energy than the usual case of just-above threshold ionization.
The energy required to detach an electron in its lowest energy state from an atom or molecule of a gas with less net electric charge is called the ionization potential, or ionization energy. The nth ionization energy of an atom is the energy required to detach its nth electron after the first n − 1 electrons have already been detached.
Ionic potential is the ratio of the electrical charge (z) to the radius (r) of an ion. [1]= = As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge.
Molecules are ionized using a vacuum ultraviolet (VUV) light source operating at atmospheric pressure (105 Pa), either by direct absorption followed by electron ejection or through ionization of a dopant molecule that leads to chemical ionization of target molecules. The sample is usually a solvent spray that is vaporized by nebulization and heat.
The high temperature of the plasma is sufficient to cause a very large portion of the sample to form ions. This fraction of ionization can approach 100% for some elements (e.g. sodium), but this is dependent on the ionization potential. A fraction of the formed ions passes through a ~1 mm hole (sampler cone) and then a ~0.4 mm hole (skimmer cone).
The electron donating power of a donor molecule is measured by its ionization potential, which is the energy required to remove an electron from the highest occupied molecular orbital . The overall energy balance (ΔE), i.e., energy gained or lost, in an electron donor-acceptor transfer is determined by the difference between the acceptor's ...