Search results
Results From The WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
If, for some notion of substructure, objects are substructures of themselves (that is, the relationship is reflexive), then the qualification proper requires the objects to be different. For example, a proper subset of a set S is a subset of S that is different from S, and a proper divisor of a number n is a divisor of n that is different from n.
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if X {\displaystyle X} and Y {\displaystyle Y} are sets and L ⊆ X × Y {\displaystyle L\subseteq X\times Y} is a relation from X {\displaystyle X} to Y , {\displaystyle Y,} then L T {\displaystyle L^{\operatorname {T} }} is the relation defined ...
A term's definition may require additional properties that are not listed in this table. In mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all distinct pairs of elements of the set in one direction or the other while it is called strongly connected if it relates all pairs of elements.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive).
In Political science and Decision theory, order relations are typically used in the context of an agent's choice, for example the preferences of a voter over several political candidates. x ≺ y means that the voter prefers candidate y over candidate x. x ~ y means the voter is indifferent between candidates x and y.