Search results
Results From The WOW.Com Content Network
Isomorphous replacement (IR) is historically the most common approach to solving the phase problem in X-ray crystallography studies of proteins.For protein crystals this method is conducted by soaking the crystal of a sample to be analyzed with a heavy atom solution or co-crystallization with the heavy atom.
In general, small molecules are also easier to crystallize than macromolecules; however, X-ray crystallography has proven possible even for viruses and proteins with hundreds of thousands of atoms, through improved crystallographic imaging and technology. [96] The technique of single-crystal X-ray crystallography has three basic steps.
Molecular replacement (MR) [1] is a method of solving the phase problem in X-ray crystallography.MR relies upon the existence of a previously solved protein structure which is similar to our unknown structure from which the diffraction data is derived.
There are several ways to determine the absolute structure by X-ray crystallography. For example, a comparison of the intensities of Bijvoet pairs or of the R-factors for the two possible structures can suggest the correct absolute structure. One of the more powerful and simple approaches is using the Flack parameter, because this single ...
Single-wavelength anomalous diffraction (SAD) is a technique used in X-ray crystallography that facilitates the determination of the structure of proteins or other biological macromolecules by allowing the solution of the phase problem.
The measurement of the angles can be used to determine crystal structure, see x-ray crystallography for more details. [5] [13] As a simple example, Bragg's law, as stated above, can be used to obtain the lattice spacing of a particular cubic system through the following relation:
The contact goniometer was the first instrument used to measure the interfacial angles of crystals. The International Union of Crystallography (IUCr) gives the following definition: "The law of the constancy of interfacial angles (or 'first law of crystallography') states that the angles between the crystal faces of a given species are constant, whatever the lateral extension of these faces ...
Important applications of phase retrieval include X-ray crystallography, transmission electron microscopy and coherent diffractive imaging, for which =. [1] Uniqueness theorems for both 1-D and 2-D cases of the phase retrieval problem, including the phaseless 1-D inverse scattering problem, were proven by Klibanov and his collaborators (see ...